

Towards Optimized Packet Processing for
Multithreaded Network Processor

Yeim-Kuan Chang and Fang-Chen Kuo

Department of Computer Science and Information Engineering
National Cheng Kung University

701 Tainan, Taiwan R.O.C.
{ykchang, p7895107}@mail.ncku.edu.tw

Abstract—With the evolution of the Internet, current routers need
to support a variety of emerging network applications while the
high packet processing rate is still guaranteed. As a result, the
network processor has become a promising solution for network
devices due to its computation capability and programming
flexibility. However, developing the network applications on
network processors is not easy. How to efficiently program
multiple processing elements and utilize various memory modules
as well as the hardware resources on network processors are
always challenges. In this paper, we investigate several
optimization issues and programming techniques that should be
considered by the developers to achieve higher packet processing
rate on network processors. We use an existing packet
classification scheme called hierarchical binary prefix search
(HBPS) [1] as the benchmark to test and evaluate these
optimization techniques. The experiments conducted on Intel
IXP2400 network processor show that the overall performance of
HBPS can be improved about 42% while these techniques are
adopted.

Index Terms—network processor, Intel IXP2400, and packet
classification.

I. INTRODUCTION

To keep up with the rapid growth of network link rate as well
as Internet traffic, current backbone Internet routers have to
forward millions of packets per second at each port. In order to
achieve such high packet processing rate, hardware devices,
such as ASIC, FPGA, and TCAM are usually adopted in the
design of current routers. However, the use of these hardware
devices makes routers difficult to upgrade and support many
new network applications. Moreover, hardware devices will
consume too many electric power and board area. Thus, these
kinds of hardware-based routers are only suitable to be
deployed in the backbone where the fast packet processing rate
is the only consideration.

Current Internet routers need to support a variety of emerging
network applications while the high packet processing rate is
still guaranteed. To fulfill the requirement of high packet
processing rate, network processors (NP) [6,10,11,12,13] are
introduced as a promising solution for building the network
devices. The network processor is a programmable processor
that contains multiple processing elements, different memory
modules, and unique instruction set specially designed for
dealing with the network applications. However, to develop the
network applications on network processors is quite different
from that on general purpose processors. How to allocate data

in different memory modules, how to arrange different
functions among multiple processing elements, and how to
efficiently use the specially designed instructions are all
programmers’ overheads. If network application programmers
do not exploit the resources and characteristics of network
processors efficiently, the developed network applications may
not achieve the ideal throughput as the programmers expect.

In this paper, we investigate many optimization issues and
programming techniques that can significantly improve the
performance of the network applications on network processors.
Some of these techniques are based on the inherent
characteristics of network processors and some of them are
based on our empirical discoveries. We apply the investigated
techniques to the packet classification algorithm on network
processors. Packet classification is the essential building block
for many emerging network applications, such as virtual
private network (VPN), network intrusion detection system
(NIDS), policy routing, traffic billing, and other value added
services. With the emergence of these applications, packet
classification plays a very important role in the design of
current Internet routers. We use an existing packet
classification scheme called hierarchical binary prefix search
(HBPS) [1] as the benchmark to test and evaluate the
optimization techniques investigated in this paper. The
experiments are conducted on Intel IXP2400 network
processor. The experimental results show that the overall
performance of the benchmark can be improved significantly.

The rest of the paper is organized as follows. In section II, we
briefly review the HBPS scheme which is used as the
benchmark in this paper. In section III, we briefly introduce the
architecture and characteristics of Intel IXP2400 network
processor. In section IV and V, we investigate several
optimization issues and programming techniques on network
processors. The experimental results are shown in section VI
and section VII concludes this paper.

II. RELATED WORK

A. Packet Classification

The problem of classifying the packets according to a set of
rules into different classes or flows is known as packet
classification. Usually, the rules are pre-defined and contain
fixed number of fields. A rule is called a match if all the fields
of the rule match the corresponding headers of the incoming
packet. The 5-D packet classification problem considers the

 1

mailto:ykchang,%20p7895107%7D@mail.ncku.edu.tw

01 Binary_Search_D1()

source IP address, destination IP address, source port,
destination port, and protocol number of the packet’s header.
The policies of comparison for these fields differ from each
other make the packet classification problem more complicated.
Each rule is associated with a priority. Usually, among all of the
matched rules, the one with the highest priority will be returned
as the result of packet classification. A complete packet
classification scheme includes 1) pre-processing phase to build
data structure and 2) search phase which classifies the packets
by searching the data structure built. In this paper, we focus on
the search process of the Hierarchical Binary Prefix Search
(HBPS). More packet classification schemes can be found in
[8].

B. Hierarchical Binary Prefix Search (HBPS)

HBPS [1] is a packet processing scheme for handling the 5-D
packet classification problem. The data structure of HBPS can
be viewed as a hierarchical structure of sorted array. An
example of HBPS is showed in Figure 1.

HBPS uses the source address of the rules to build the first
level of sorted array (dimension 1). Then, the remaining rules
are leaf-pushed to the corresponding entries of dimension 1
array. The destination addresses of the pushed rules are used to
build the second level of sorted array (dimension 2). After

leaf-pushing the rules to the dimension 2 array once again, the
source port, destination port, and protocol of the remaining
rules are used to build the linked list sorted by the rule’s
priority.

Figure 2 shows the search codes corresponding to HBPS. The
HBPS search process begins at the dimension 1 array. After
binary searching (while-loop) the dimension 1 array to find the
longest prefix match (LPM) (line 09), the search space in the
next dimension (dimension 2) are obtained from the LPM entry
(line 11). Following the same process done in dimension 1, the
search space in dimension 3-5 can be obtained in dimension 2
(lines 15-18). The search process ends after linear search with
the linked list in dimension 3-5 (lines 21-24).

Figure 3 shows the initial design of the function
Binary_Search_D1 used in line 09 of Figure 2. The search
space [Begin..End] is obtained from the global variable
Search_Space_D1. During searching in dimension 1, HBPS
needs to find the longest prefix match. But in the case of
general binary search process, it will abort if an exact matched
occurs. Thus, it is possible that the sorted array is not fully
traversed after a match is found. However, in the case of HBPS,
the search algorithm need to traverse the whole array Array_D1
until only two prefixes remain in the search space. It makes the
function Binary_Search_D1 looks different (lines 07-17). The
operation to find the LPM of the source address is applied to the
remaining entries once the last two entries remain in the search
space (lines 11-14). In the other cases, the search space will be
halved. The remaining search space is determined by the
comparison of the source address and the corresponding
prefixes of the middle entry of the search space (lines 17-18).

We use the same design in function Binary_Search_D2 used

01 HBPS_Search ()
02 {
03 Variable Search_Space_D1, Search_Space_D2, \

Search_Space_D35
04 Variable LPM_D1, LPM_D2, LPM_D35
05
06 Search_Space_D1 = 0..(Array_Size_D1-1)
07
08 // Search Dimension 1
09 LPM_D1 = Binary_Search_D1()
10 If(LPM_D1 != NULL)
11 Get Search_Space_D2 from structure of LPM_D1
12 Else No_Matched_Rule()
13
14 // Search Dimension 2
15 LPM_D2= Binary_Search_D2()
16 If(LPM_D2 != NULL)
17 Get Search_Space_D35 from structure of LPM_D2
18 Else No_Matched_Rule()
19
20 // Search Remained Dimension (D3-5)
21 LPM_D35=Linear_Search_D35()
22 If(LPM_D35 != NULL)
23 Get Matched Rule from structure of LPM_D35
24 Else No_Matched_Rule()
25 }

Figure 2. Pseudo Code of HBPS-Search.

Dim1
02 {
03 Variable Begin, End, Middle
04
05 Set_Search_Space(Begin, End, Search_Space_D1)
06
07 While(Begin < End)
08 {
09 if ((Begin==End) || ((Begin+1)==End))
10 {
11 Read Array_D1[Begin] into Prefix(Begin)
12 Read Array_D1[End] into Prefix(End)
13 Check if Prefix(Begin) Matched the Address
14 Check if Prefix(End) Matched the Address
15 Break
16 }

Dim2

Dim3-5

Figure 1. Example of HBPS.

17 Middle = (Begin+End) >> 1
18 Half_the_Search_Space(Begin, End, Middle,
Higher_OR_Lower);
19 }

Figure 3. Pseudo Code of Binary-Search-D1.

01 Linear_Search_D35 ()
02 {
03 while(Search_Space_D35)
04 {
05 Read_a_D35_Node
06 Check_Rule
07 if(Match) break
08 }
09 }
Figure 4. Pseudo Code of Linear-Search-D35.

 2

in line 15 of Figure 2. On the other hand, the detail of the
function Linear_Search_D35 is shown in Figure 4. Basically,
the search process in linked list is only aborted after the match
occurs or all of the nodes of linked list are checked.

III. HARDWARE ARCHITECTURE OF EVALUATED NETWORK

PROCESSOR

In this paper, Intel IXP2400 network processor [2] is chosen
as the experimental platform due to its popularity in the
network research area. Figure 5 shows the component diagram
of Intel IXP2400. The processor has an ARM compatible
XScale core (not shown in Figure 5) and eight Microengines
(ME) which can execute in parallel or pipeline for processing
packets in high speed. Each ME has its own control store which
can store 4K 40-bits instructions. A microengine executes the
instructions in the control store under the control of XScale.

Each ME has eight threads which execute concurrently to
cover the latency of memory accesses. Once a thread issues a
memory request, the thread needs to swap itself to let another
thread to continue executing until the memory request is
completed. Such mechanism prevents ME’s from being idle.

IXP2400 can access four kinds of memory units which differ
in terms of sizes and speeds. They are Local Memory,
Scratchpad, SRAM, and DRAM. Each ME has 640*4 bytes
Local Memory which can not be accessed by other
microengines. Local Memory is the fastest memory unit.
DRAM is the off-chip memory for buffering the content of the
incoming packets. The 16 KB scratchpad can be programmed
as multiple scratch rings. These scratch rings can be shared by
all ME’s. Besides, these scratch rings are the FIFO structure for
ME’s to exchange the handles and other information of the
packets stored in DRAM. Further, IXP2400 supports two
channels of SRAM. SRAM are used for storing the controlled
data.

IV. SURVEY OF NP PROGRAMMING TECHNIQUES

Many optimization techniques can be applied for
programming network processors. These techniques can be
classified as follows.

A. NP Independent Techniques

The goal of the NP independent techniques reduces
unnecessary computations. One way to achieve such goal is to
reduce the instructions that are actually executed. For example,
the common values that need to be computed online can be
pre-computed and stored in a faster memory for lookup. Also,
the authors in [4] suggested to inline the short functions which

will be called frequently. The IXP Microengine C compiler has
the directives __inline and __forceinline that we can use to
guide the inline policy of the compiler. Multi-Thread Microengine*8

0

Per-ME Local Memory,
Control Store

DRAM

SRAM

Figure 5. IXP2400 component diagram.

B. NP Memory Dependent Techniques 1 2 3

7 6 5 4
The techniques listed here are mainly for reducing the

latency of memory accesses. The overhead for accessing
memory usually is the main reason for poor performance of
packet processing tasks in routers. It is obvious that the scheme
issuing less number of memory accesses will perform better.
But it would be different if the latency for memory accesses can
be overlapped.

SRAM

 Using the fastest memory
The easiest solution of the above problem is to use the fastest

memory interface to allocate the variables. However, the
drawback is that the fastest memory is expensive and so its size
is usually smaller than needed.
 Following the characteristics of the memory interfaces

Each memory interface works under its own characteristics.
Those characteristics may make the previous techniques
become advantageous. For example, each processing element
(PE) of IXP2400 contains a memory private to each PE called
Local memory as described above. Before accessing the local
memory, one additional operation needed to be performed in
advance is that one of the controlled registers needs to be set to
point to the target address. The desired memory access can be
performed in only three cycles after the above additional
operation. However, once the controlled register is written, the
local memory access can be improved with the self-increment
pointer operation supported by IXP2400. With this mechanism,
the overhead to set the controlled register can be avoided if the
address of the data to be accessed is just sit at the next address
of the current data. Thus, better performance can be obtained if
such characteristics of specific memory have been considered.
 Issuing multiple requests at a time

Issuing several memory requests at a time instead of issuing
the requests sequentially is a useful technique for hiding the
latency of memory accesses. For example, this technique can be
applied to lines 11-12 in Figure 3 because the addresses of
variables which need to be accessed (Begin, End) are
independent to each other. The modified design is shown in line
13 of Figure 6.
 Using wide word access (burst read/write)

Programmers are allowed to combine several memory
requests to the contiguous memory addresses into a single
multiple-words memory request. For example, the function
Linear_Search_D35 shown in Figure 4 is so designed to read
one linked list node and check whether the rule is matched. In
our implementation of HBPS, we map all of the nodes of the
linked list into a block of contiguous memory locations. Due to
above reason, multiple requests to contiguous linked list nodes
can be combined into one request to reduce a number of
memory accesses. As a result, the less is the number of memory
requests issued, the lower is the overhead on the command bus.

C. NP instruction dependent techniques

The instruction dependent techniques are network processor
dependent because no processors will implement the same
instruction set. It’s the programmers’ responsibility to be

 3

01 Binary_Search_D1_V2()
02 {
03-06 ……

familiar with the available instruction set, especially the bit
manipulation instructions. For example, IXP2800 B0
compatible processor supports an instruction pop_count which
can count the number of set bits in a 32-bit register. For the
packet processing schemes which use bitmap compression
techniques, such instruction will be useful. For example,
Bitmap-RFC [5] utilizes this instruction to access the
compressed data structure. Without the instruction, the
operation can not perform efficiently. In [5], an alternative
implementation using another instruction FFS [4] which is also
available in IXP2400 processor has been proposed too. But it
has been shown in [5] that this alternative implementation is
less efficient than the original one. As a result, choosing the
most suitable instruction is very important to design an efficient
implementation for the packet processing tasks.

V. TECHNIQUES TO PACKET PROCESSING

A. The Basic Design of HBPS

For convenience sake, we call our techniques for
implementing HBPS described above as HBPS-V1. Further
evaluation results of the implementation can be found in
Section VI.

B. The Second Design of HBPS

We observe that the while loop of HBPS-V1 occupies a great
percentage of the total executing time. Besides, such process
will be used twice in the searching process of HBPS (dim1 &
dim2). So we focus on decreasing the overhead of the while
loop. After examining the codes in Figure 3, we observe that
the IF statement (line 09) will be executed when we have to
determine the relationship between variables Begin and End.
However, the result of comparison is usually false. Also, the
comparison to Begin and End in the While-Loop (line 07) is
always executed but will never return the false result. While
considering the binary search design (Figure 3) of HBPS-V1,
the problems of the design we observed are:
 The WHILE-statement is redundant in all of the cases.
We use the statement (line 07) to determine the condition to
abort the while loop. But the condition of the WHILE statement
is loose than the IF statement (line 09). The IF statement will
result in that the while loop is broken before the condition of
the while statement becomes false.
 The return of IF-statement is false for most of the cases.

Instructions need to be loaded into the instruction pipeline
before executing. If the pre-loaded instructions are useless
when the branch perdition fails, these instructions are needed to
be cleared from the pipeline. Some machine cycles will be
wasted before the instructions in the correct branch are loaded.
According to the optimization techniques listed in [4], the
compiler will generate the binary code with the decision when
the default branch in the IF-statement is taken. That is, the
instructions in the IF statement will be loaded into the pipeline.
But the design in Figure 3 usually gets the false result and will
lead to the pipeline abortion and thus decrease the performance.

Based on the observations described above, we change the
design of Binary_search_D1 as shown in Figure 3 to the
second version shown in Figure 6. The changes are: 1) we
combine the only comparison between Begin and End in line 7
and the two comparisons also between Begin and End in line 9
of Figure 3 into one comparison. 2) We move the statements for
checking whether the address matches the prefixes or not out of
the while-loop. With these two changes, the search process
shown in Figure 6 becomes: 1) the binary search is performed
on the prefix array first and the search space is finally reduced
to only two prefixes (lines 07-11). 2) only one read operation
on array to obtain Prefix (Begin) and Prefix (End) is performed
(line 13). 3) the operation to determine which prefix or none of
prefixes matches the address is performed (lines 14-15).

The design of Figure 6 is also suitable for the function
Binary_Search_D2 used in line 15 of Figure 2. As a result, we
use the second design of binary search to replace both of the
Binary_Search_D1 and Bianry_Search_D2 of the HBPS. We
call the design as HBPS-V2.

C. The Third Design of HBPS

The third design of HBPS is developed based on the
following observations. The control store (or called instruction
store) [2] which stores the instructions to be executed is
under-utilized. Each control store of Intel IXP2400’s ME can
store up to 4K 40-bits instructions. But we observe that
HBPS-V1 and HBPS-V2 only occupy 325 and 315 instructions
which are much less than the 25% of the total control store.

Our goal of the third design is to embed some of the static
data structures into the control store. Because the structure is
hardcoded, the external memory access to the structure can be

07 While((Begin+2) <= End)
08 {
09 Middle = (Begin+End) >> 1
10 Half_the_Search_Space(Begin, End, Middle, \

Higher_OR_Lower)
11 }
12
13 Read Prefix Array_D1[Begin] and Array_D1[End] \

into Prefix(Begin) and Prefix(End)
14 Check if Prefix(Begin) Matched the Address
15 Check if Prefix(End) Matched the Address
16 }

01 Binary-Search-D1-V3()
02 {
03-06 ……
07 if(address >= the prefix in the middle of the array)
08 Begin= (Begin+End) >>1
09 else
10 End = (Begin + End) >>1
11
12 While((Begin+2) <= End)
13 {
14 Middle = (Begin+End) >> 1
15 Half_the_Search_Space(Begin, End, Middle,
Higher_OR_Lower)
16 }
17
18 Read Prefix Array_D1[Begin] and Array_D1[End] into \
19 Prefix(Begin) and Prefix(End) Figure 6. Pseudo Code of second design of

Binary-Search-D1 (HBPS-V2)
20 Check if Prefix(Begin) Matched the Address
21 Check if Prefix(End) Matched the Address
22 }

Figure 7. Pseudo Code of the third
design of Binary-Search-D1 (HBPS-V3)

 4

avoided. As a result, the speed of the packet processing will
become faster. Obviously, the data structure to be hardcoded
should be frequently accessed and are small enough to be kept
in the control store.

Table I. The analysis of SRAM Read Command Bus
FIFO of HBPS-V3 and HBPS-V4

 1ME 2ME 3ME 4ME 5ME 6ME
HBPS-V3 (Structure in SRAM Channel #1 only)

Channel #0 0.01 0.03 0.04 0.04 0.04 0.04We apply this technique to HBPS-V2 by hardcoding the first
level of array into control store. Figure 7 presents a possible
modification. In the loop of binary search, a number of the
middle entries of the search space are fetched and compared to
the address. The next search space to be binary searched is
determined by the relationship of the comparison. For example,
in the first iteration, the middle entry of the search space
[Begin..End] says that middle is fetched. After the comparison,
the search sub-space will be either [Begin..Middle] or [Middle..
End]. For the two possible search sub-spaces, there are two
possible middle entries. With the trend, the more time we
un-loop the while loop, the more possible data structure we
need to keep in the control store.

Channel #1 0.23 1.15 3.88 5.81 6.31 6.44
HBPS-V4 (Structure in SRAM Channel #0,1)

Channel #0 0.16 0.33 0.53 0.71 0.80 0.84
Channel #1 0.06 0.34 1.50 3.13 4.05 4.39

Figure 7 is the design corresponding to Figure 6 which just
un-loop the while loop once. The statements (lines 12-16) are
not removed because it is not fully un-looped. The time that the
statement can be un-looped actually depends on the rule tables
and the size of available the control store.

We apply the second technique to HBPS-V2 to develop
HBPS-V3. Because the size of available control store is still
large enough, we hardcode the whole structure of the first level
(dim1) array into the control store. We call the design as
HBPS-V3.

D. The Fourth Design of HBPS

After adopting more than three ME’s for packet processing,
the design HBPS-V3 reaches its limitation. No further
performance can be obtained by using more ME’s. The fourth
design HBPS-V4 is based on the observation that the average
length of the SRAM command bus FIFO is long. If the length
of the bus is long, longer delay will be needed to complete the
memory requests. According to [7], we just distribute the data
structure to both of the SRAM channels to solve the problem.

Table I compares the statistics before and after applying this
technique to the design. Before applying the technique, the
average length of the command bus may exceed 5. But after
moving some data structure to another channel of SRAM, the
average length of the SRAM channel command bus is reduced.

VI. PERFORMANCE EVALUATION

A. Simulation Setting

We survey several techniques in the previous section. Besides,
we also apply some of them to enhance the design of HBPS.
For now, we will evaluate these designs to discover how much
enhancement can be obtained from these optimization
techniques. In this paper, we simulate all of the evaluated

schemes under Developer Workbench which comes from IXA
SDK 3.51 [3]. All of the evaluated codes are written in MicroC
[4].

Our simulation refers to the setting of Radisys ENP-2611
evaluation board [6]. The board contains one Intel IXP2400
network processor. For ENP-2611, all of the processing
elements include XScale and MEs are executing at 600 MHz.
With the eight ME’s of IXP2400, we allocate one ME for
receiving packets while another one for transmitting packets.
The remaining six MEs can be allocated for evaluating the
HBPS (Figure 8). But we mainly focus on the case that using
one ME for packet classification.

B. Rule and Trace for Packet Classification

To benchmark these techniques, we use ClassBench [9] to
generate a rule table with 4,704 rules and a trace that
corresponds to this table. The trace contains 48099 headers.
Throughout this paper, all of the experiments are evaluated
based on the same rule table and trace.

To simulate the search process of HBPS without constructing
the needed data structure first, we pre-built and convert the
corresponding data structure of HBPS to Workbench
compatible scripts. In the case of HBPS-V1, HBPS-V2, and
HBPS-V3, the scripts are loaded to channel 1 of SRAM before
the simulation begins. But in the case of HBPS-V4, the scripts
are distributed to the both channels of SRAM.

The trace generated by ClassBench is equally divided to three
parts. The three partial traces are converted to the stream format
compatible to Workbench. The three streams are used for the
three receive ports supported by ENP-2611. Thus, the
forwarding rate of packet processing is obtained after all of the
packets are transmitted.

C. Evaluation of Different Designs

We use several metrics to compare four implementations of
HBPS.
 Forwarding Rate

The first part of Table II compares the forwarding rates of
four designs of HBPS while only one ME is considered for
packet processing. As a result, HBPS-V2 is faster than

Table II. The analysis of the four implementation of
HBPS (1ME)

 V1 V2 V3 V4
Forwarding Rate (Mbps) 691.03 841.83 985.38 987.05
Speed-Up to HBPS-V1 100 % 121.82 % 142.60 % 142.84 %

Pipeline Abort Rate 29.86 % 23.13 % 21.09 % 21.13 %
Number of Instructions 325 313 966 966
Utilization of Control

Store 7.93 % 7.64 % 23.58 % 23.58 %

Avg. Number of Needed
SRAM Access 21.46 21.46 13.68 13.68

Figure 8. Architecture of the Evaluation Platform

Rx
 Tx

ME

 5

 6

HBPS-V1 while the HBPS-V4 is the fastest one among all four
designs. It can be observed that HBPS-V4 is 42 % faster than
HBPS-V1. Figure 9 shows the speed-up of the forwarding rates
relative to HBPS-V1.
 Percentage of instruction pipeline aborted

The second part of Table II compares the rates of instruction
pipeline aborted. The abort rate of HBPS-V1 is 29.86 % and the
rate of HBPS-V2 becomes a lower rate of 23.13 %. It means
that about 29.86 % of total simulation time that HBPS-V1 does
not execute because the instruction pipeline is aborted. With
the newer design of the while loop, HBPS-V2 fixes the problem.
With the technique, HBPS-V2 becomes 21 % faster than
HBPS-V1 while no additional mechanisms are adopted.
 Utilization of the control store

The third part of Table II compares the number of instruction
(uword) used for packet processing ME. HBPS-V3 and
HBPS-V4 have the highest utilization among these four designs
because we hardcode the data structure of the first level array
into control store. The instruction size of HBPS-V3 and
HBPS-V4 is the same because the only difference between
these two designs is the memory interface that holds the data
structure.

The fourth part of Table II compares the needed number of
memory requests to access the HBPS structure which is stored
in SRAM. By considering the information with the used
instructions, we can observe that hardcoded technique reduces
about 7.78 times of memory accesses but needs additional 653
instructions and result in higher forwarding rate. We believe
such tradeoff is worth, because the control store still has
enough space (75 %) to add other instructions for implementing

other packet processing schemes.

500

600

700

800

900

1000

1100

HBPS V1 HBPS V2 HBPS V3 HBPS V4

F
or

w
ar

di
ng

 R
at

e
(M

bp
s)

0%

20%

40%

60%

80%

100%

120%

140%

160%

S
pe

ed
-U

p
(P

er
ce

nt
ag

e)

 Forwarding rate with more ME’s
Figure 10 compares the forwarding rates of HBPS-V1,

HBPS-V3, and HBPS-V4 while more ME’s are adopted for
packet processing. The optimization techniques make
HBPS-V3 and HBPS-V4 always outperforms HBPS-V1. Table I
shows the average length of SRAM Read Bus FIFO. The
average length of HBPS-V4 is less than HBPS-V3 when more
than 3MEs are used. And HBPS-V4 also outperforms HBPS-V3
in those cases. The technique that distributes the memory
pressure to other memory interface mainly works in the case
that average length of the SRAM command bus is relatively
long. Figure 9. Forwarding rates and speed-ups.
 Limitation of the HBPS

The bottleneck of HBPS is the memory accesses required for
processing packets. However, it can be solved by hardcoding
more data structure into control store because only 25 % of the
control store is needed in the original un-optimized HBPS.
Thus, how to hardcode more data structure into the remaining
75% control store is left as our future work.

VII. CONCLUSION

Network processor is a promising solution to develop high
speed routers. While developing packet processing schemes on
network processors, many programming issues need to be
considered. Implementations without any optimization
technique can not achieve their ideal performance. In this paper,
we surveyed and applied several programming techniques to
enhance the performance of HBPS. By considering these
programming issues, we can increase the forwarding rate of
HBPS by 42 %. Although these techniques are evaluated by
using the packet classification problem, they also work for
other packet processing tasks.

REFERENCES
[1] Y.-K. Chang, "Efficient Multidimensional Packet Classification with Fast

Updates," IEEE Transactions on Computers, Vol. 58, No. 4, pp. 463-479,
April 2009.

[2] Intel Corporation, "Intel® IXP2400 Network Processor Hardware
Reference Manual," November 2003.

[3] Intel Corporation, “Intel® IXP2400/IXP2800 Network Processors
Development Tools User's Guide”, March 2004.

[4] Intel Corporation, "Intel® IXP2400/IXP2800 Network Processors
Microengine C Language Support Reference Manual," November 2003.

[5] D. Liu, Z. Chen, B. Hua, N. Yu, X. Tang, "High-performance Packet
Classification Algorithm for Multithreaded IXP Network Processor,"
ACM Transactions on Embedded Computing Systems, Vol. 7, Issue 2,
Article 16, February 2008.

500

1000

1500

2000

2500

3000

3500

1ME 2ME 3ME 4ME 5ME 6ME

Number of MEs for Packet Processing

F
or

w
ar

di
ng

 R
at

e
(M

bp
s)

HBPS V1

HBPS V3

HBPS V4

[6] RadiSys Corporation, "ENP-2611 Hardware Reference”, August 2003.
[7] Z. X. Tan, C. Lin, H. Yin et al., “Optimization and benchmark of

cryptographic algorithms on network processors,” IEEE Micro, vol. 24,
no. 5, pp. 55-69, Sep-Oct, 2004.

[8] D. E. Taylor, "Survey and Taxonomy of Packet Classification
Techniques," ACM Computing Surveys, Volume 37, Issue 3, pp. 238-275,
September 2005.

[9] D. E. Taylor and J. S. Turner, "ClassBench: A Packet Classification
Benchmark," IEEE/ACM Transactions on Networking, Vol. 15, Issue 3,
pp. 499-511, June 2007.

[10] http://www.baymicrosystems.com/
[11] http://www.lsi.com/networking_home/networking_products/network_pr

ocessors/index.html
Figure 10. The speed-up of forwarding rate by

adopts more MEs for packet processing.
[12] http://www.netronome.com/pages/network-flow-processors
[13] http://www.xelerated.com/en/hx/

http://www.baymicrosystems.com/
http://www.lsi.com/networking_home/networking_products/network_processors/index.html
http://www.lsi.com/networking_home/networking_products/network_processors/index.html
http://www.netronome.com/pages/network-flow-processors
http://www.xelerated.com/en/hx/

	I. INTRODUCTION
	II. Related Work
	A. Packet Classification
	Hierarchical Binary Prefix Search (HBPS)

	III. Hardware architecture of evaluated network processor
	IV. Survey of NP Programming Techniques
	A. NP Independent Techniques
	B. NP Memory Dependent Techniques
	C. NP instruction dependent techniques

	V. Techniques To Packet Processing
	A. The Basic Design of HBPS
	B. The Second Design of HBPS
	C. The Third Design of HBPS
	D. The Fourth Design of HBPS

	VI. Performance Evaluation
	A. Simulation Setting
	B. Rule and Trace for Packet Classification
	Evaluation of Different Designs

	VII. Conclusion

